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Abstract

This paper investigates the dynamic snap-through buckling of classical and non-classical curved beams
subjected to a suddenly applied step load. The small scale effect prevalent in non-classical beams, viz., micro and
nanobeam, is modelled using the nonlocal elasticity approach. The formulation accounts for moderately large
deflection and rotation. The governing equilibrium equations are derived using the dynamic version of the principle
of virtual work and are subsequently simplified in terms of the generalized displacements for the development of a
nonlocal nonlinear finite element model. The spatial domain comprises of 3-noded higher-order curved beam
elements based on shear flexible theory associated with sine function. The nonlinear governing equations are solved
using the incremental stiffness matrices and by adopting direct time integration method. The critical dynamic
buckling load is identified by the smallest load at which there is a sudden rise in the amplitude of the vibration. The
efficacy of model here is compared against the available analytical studies for the local and nonlocal beams. A
detailed study is made to highlight the effects of the geometric parameter, initial condition, nonlocal parameter, load
duration, and boundary conditions on the dynamic stability of both classical and non-classical curved beams. The
nature and degree of participation of various eigen modes accountable for the dynamic snap-through behaviour are
examined a posteriori using the modal expansion approach. Some interesting observations made here are valuable

for the optimal design of such structural member against fatigue and instability.
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Introduction

With slender structural elements subjected to increasingly complex and severe environments such as in
shock loading on supersonic aircrafts, seismic loading on beams and wind gusts over roof etc., it becomes
imperative to study the limits to their performance. Strength, resistance and other physical properties of structural
elements are often estimated using data from static analysis and experiments; however structures can reach failure at
loads much lower when subjected to dynamic loading. The problem of structures subjected to sudden loads for
infinite duration has received significant attention in the study of dynamic stability. It is observed with only
incremental changes in the load, the structure shifts from oscillating with sufficiently small amplitude about its
static equilibrium to experiencing large-amplitude oscillations [1]. In the process the structure traverses an unstable
static equilibrium configuration, emulating the static snap-through buckle. One of the first studies of the
phenomenon was carried out by Budiansky and Roth [2] on spherical caps. Hoff and Bruce [3] analysed a simpler
configuration, the half-sine arch under a similarly distributed load. in the present work an extensive study of the
dynamic stability of classical/non-classical curved beam is carried out. Due to its simplicity, it has received
exhaustive attention in literature and thus a brief discussion of the existing work is provided here to bring out the
widely used methods, the limitation of the solution approaches, and the accepted results, etc.

Huang et al. [4] studied the dynamic snap-buckling of hinged sinusoidal arches under the influence of a
sudden load for infinite duration. The governing equations were derived using the principle of force and momentum
balance wherein the geometric nonlinearity was incorporated via the component of horizontal thrust. The system
was simplified into two equations by assuming only the first (symmetric) and second harmonic (asymmetric) modes
as the solution. The critical loads were identified using both the saddle point on the potential surface and the
criterion outlined in the work of Budiansky and Roth [2]. A decrease in the critical load was noted in the presence
of an initial asymmetric imperfection. A rigorous analytical approach was carried out in Ref. [5] where the problem
setup was similar to that of given in Ref. [4]. It brought out the effects of damping on the system, it was found that,
beyond a certain arch rise, the critical loads calculated from static analysis and a damped dynamical system were
same. Critical cases were identified using the criterion of dynamic stability in the sense of Liapunov. Hsu et al. [6]
provided an extensive analysis of the dynamic instability of clamped shallow arches, by studying simple, normal

and parabolic arches under different configuration of loads. Here, instead of assuming a Fourier series solution, the
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normalized buckling eigen modes of a simple column clamped at both ends were used, ensuring that the modes
were decoupled statically. Humphreys [7] adopted a more universal definition for the arch, and reported a net
decrease in the critical load with the increase in the non-dimensional geometry parameter and the magnitude of
initial imperfection. A limited sine series solution was used to solve the governing equation. With various different
boundary conditions, initial conditions, loadings, and solution methodologies such as Galerkin approach, direct
substitution, etc., the problem of dynamic buckling has been solved majorly, using an a priori assumption on the
solutions based on the flat column in the literature [8-12].

Sheinman [13] employed an interlaced finite difference grid, which resembles elements used in finite
element analysis to avoid shear locking, with in-plane displacements on one grid, and out of plan on the adjacent
alternate points. It was found that increasing the shear stiffness of the beams resulted in higher frequencies; however
the critical buckling loads remained the same. Chien and Palazotto [14] focussed on the dynamic buckling of
composite cylindrical panels using an isoparametric shell element and incorporated higher-order transverse shear
deformation. The various examples were explained using phase plane diagrams to highlight the chaotic nature of the
dynamic snap-through buckling. The beta-m time integration scheme was used to register the dynamic response,
and inflection points in the response were used to identify the critical loads. Pi and Bradford [15] studied the
dynamic buckling phenomenon over the shallow circular arches under a sudden uniform circular load using the
finite element method wherein the results confirmed that the dynamic critical loads were lower than the static
buckling loads for various boundary conditions. ~ Yang et al. [16] studied the dynamic buckling of functionally
graded graphene platelets (FG-GPLs) reinforced composite shallow arches under a concentrated step load by using
an analytical approach to compute the nonlinear equilibrium path and identifying the limit point for dynamic
buckling load; the results were shown to have good agreement with a ANSYS based FE model. Chandra et al. [17]
employed the finite element approach in conjunction with the experimental analysis for characterizing the dynamic
transitions associated with the snap through of shallow arches. The nonlinear thermal-dynamic buckling of curved
beams was studied in [18] using the finite element approach, where the importance of an elastic foundation was
highlighted in making the post-equilibrium unstable for the occurrence of dynamic buckling. Other studies
employing mesh based methods to study dynamic buckling are reported in Refs. [19-23]. Most mesh and FEM

based investigations employed models based on the classical or first-shear deformation theory, they provided a
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limited parametric study related to initial conditions, geometry parameter and rarely brought out discussion on the
participating modes in the registered response.

To address the need for making devices which consume lesser space and are equally resilient, sectors
ranging from aerospace, energy to medicine have shown a growing interest in the broad discipline of
nanotechnology. Complex systems and devices make use of structural elements ranging in size from 1-100nm. This
has necessitated the study of their behaviour in response to various types of loadings. Important studies employing
the use of a non-local elasticity approach to incorporate the small-scale effects prominent in nanobeam are listed in
[24-28]. While the aforementioned studies are linear in nature, Ghayesh et al. introduced non-linear terms to
incorporate the membrane stretching effect coupled with different theories to -model the size-dependent effect in
[29,30] to analyse the nonlinear dynamics of a straight microbeam using the Galerkin’s approach. The modelling
and simulation on the behaviour of straight macro/nanobeams is exhaustive; literature exploring the instabilities
curved micro/nanostructures is rather meagre. While in the macro regime, failure due to dynamic buckling renders
the structure useless; in micro/nanostructures it finds application in radio-frequency (RF) switches, accelerometers,
pressure sensors and bio-MEMS. Das and Batra [31,32] carried out extensive analysis of the dynamic instabilities
i.e. snap-through and pull-in instability in microelectromechanical shallow arches. The nonlinear contribution to the
governing equation was introduced from the stretching and voltage terms making it susceptible to dynamic
instability. A series like function of the eigen modes of an undamped straight beam was assumed to solve the
nonlinear partial differential equations. Ref. [33] presented solutions to the problem of bifurcation buckling of
nanorings and arches for the static case; a relation for the case of buckling using a Fourier series assumption for the
displacement was derived. The size dependent effects were modelled using the Eringen’s nonlocal theory. The
study reported a reduction in critical load with the increase in nonlocal parameter. The study by Kaviani and
Mirdamadi [34] analysed static snap-through and bifurcation of nano-arches on a Winkler elastic foundation, using
both the strain gradient and Eringen’s nonlocal theory. The foundation modulus was found to increase the stability
of the system and in some cases change the type of mechanism for instability. She et al. [35] investigated the snap-
through buckling in functionally graded porous curved nanobeams using the two step perturbation technique. While

the work on nonlinear static buckling of the non-classical curved beam is very much limited, studies dealing with



the nonlinear transient analysis and dynamic stability of such class of beam are not yet commonly available in the
literature.

The review of literature made here suggests that a systematic approach through nonlinear dynamic response
analysis in conjunction with higher-order shear deformation theory without imposing any restriction on the mode
shapes for analysing the snap-buckling of arch or curved beam, in general, is warranted to predict the behavioural
trends of classical and non-classical curved structures more accurately allowing one to establish general principles
for designing complex nanodevices. The present study, in order to fill the gap in the literature, thus focuses on
deriving the governing equilibrium equations through Hamilton’s principle in terms of generalized displacements
for the development of nonlocal nonlinear dynamic finite element formulation for curved beam. The geometric
nonlinearity, based on the Lagrangian strain components, is approximated to account for the moderate large
displacement and rotation. The size dependent effect associated with non-classical beam, viz., micro and nanobeam,
is introduced through nonlocal elasticity theory [36, 37]. A higher-order shear flexible finite element employing the
trigonometric shear deformation theory described in Touratier [38] and Polit and Touratier [39] is integrated with
the finite element model. The incremental stiffness matrices evolved from nonlinear finite element procedure are
reformulated to result in symmetric matrices as this improves the computational efficiency. The resulting nonlinear
equations are then solved using the Newmark’s time integration procedure coupled with the Newton-Raphson
iterative scheme in establishing the equilibrium position at every time step. The dynamic snap-through of classical
and non-classical curved beams is identified by examining the load-deflection relationship evolved through the time
responses obtained for various loads. An extensive modal expansion study is subsequently conducted to extract the
participation of various natural vibration modes dictating for the change in the buckling trend of classical/non-
classical curved beams. The work presents a rigorous and quantitative analysis of the critical loads with respect to
the geometric parameter, nonlocal parameter, boundary conditions, initial conditions, applied load duration, and
also mode participation in the snap—through.

The paper is structured as: Curved beam classical continuum model is dealt in Section 2, followed by Non-
classical or local formulation in Section 3; governing equations through matrix formulation is outlined in Section 4
and finite element methodology and solution approach are presented in Section 5; results and discussion are shown

in Section 6, followed by the conclusion based on the detailed study.
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2. Classical curved beam model

In the present work, a curved beam of length L, with a rectangular cross section S and an associated local
curvilinear system is considered, Fig. 1a. Curvilinear coordinate x € [0, L] is taken along the arc length of the
curved beam whereas z € [-h/2, h/2] is assumed along the thickness of the beam. The y coordinate is associated
with the width of the beam and is not considered in the formulation. R is the constant radius of curvature of the
beam. Here, a wide range of beams can be studied by varying the thickness h and the open angle ¢ of the curved
beam.

2.1 Constitutive relation
Considering a two-dimensional model of an isotropic curved beam, the constitutive equations are given as

Oxx = C118xx
1
{sz = CopVxz @)

where the stiffness coefficients C11 & Ces are equal to Young’s modulus, E and shear modulus, G, respectively.
2.2 Displacement field

The present formulation incorporates the shear deformation theory based on sine function, denoted as SIN
[38, 39], and developed for various applications on beams, plates and shells. The displacement kinematics of the

proposed model are represented by

{u(x. 2) = (145) o) = 2w'o () + f(2) 70 () 22)
w(x,z) = wo(x)

where the function y g is the defined as

Yo (x) =0(x)+wy(x) = =uy(x) (2b)

This SIN model makes use of three field variables i.e. u, (X, t) referring the curvilinear axial displacement; wy (X, t)

as the transverse displacement of mid-line point of the beam; 6(x, t) associating with rotation of the section. Lastly,



t is the temporal variable. In the current work, the spatial and temporal derivatives are denoted as ()’ = dd—x and () =

4 tivel
¢ » respectively.
In Eq. (2a), the definition of the function f (z) allows us to compute the bending deformation of beam for different

theories available in literature, as seen in Fig. 2 such as Euler-Bernoulli by letting f(z) = 0; Timoshenko by f(z) =

z; SIN model by f(z) = Zsin ™.

2.3 Strain Field

The strain components are evolved classically with respect to the curvilinear covariant basis vector and we

recover the following relations, omitting the coordinates (x, t) & (z) from the displacement functions for simplicity

and introducing derivative (). = 2 as

dz
-1 , 1
Exx = (1 +£) (u +EW)
-1 , 1
Yaz = Uz + (1 + %) (w - Eu) (3)
From the kinematics defined in Eq. (2a), introducing some simplifications & assumptions, #zl and

(1+2/R)

neglecting higher order terms, the linear strain components from Eq. (3) can be shown in terms of displacement

variables as

L _ .7 1 1y 1 ’ 4
Exx = Up T ZWo +Z(ZUy —Wo + fvo (43)
VXLZ = f,zy()

Using the appropriate simplification to the Lagrangian strain components and retaining for the moderate large

deflection and rotation effects, the total strain components can be written as [40]
1, 2, 12, A2, ,
SXX:&‘)I{‘X{—E(WO)Z—{—EfZ(;/‘ + 0w,

Yxz = VxLz + ffz 60" + fzguo (4b)



2.4 Stress, force and moment field for local analysis

For the classical elasticity analysis, the stress field is directly deduced from the constitutive relation given in
Eq. (1) and the strain components in Eq. (4). On the other hand, the force and moment fields are defined from the

stress components as follows:

h
[Nxx'Mxx' My, M;x] = f—f{iz[l'z' f) fz] Oxx dz

N h
[sz: Q;z] = f—i/liz [f2 ffzlox, dz (5)
2.5 Variational statements

The governing equations of motion in terms of displacements are derived using Hamilton’s Principle. The

dynamic version of the principle of virtual work takes the following form

0= [, (8U + 6V — 6K) dt (6)

where §U & 6K are the variation of the strain energy and kinetic energy, respectively; §V is variation of the work
done by the applied load.
Taking into account the force and moment fields Eq. (5), the variation of the strain energy is written in terms of the
force and moment fields and the variation of the displacements given in Eq. (2) as
LN LN
8U = Jy -1 (823 Ox) dzdx + [ [ (87 Txz) dzdx =
Nyx (8U'o + % Wo + WodWg ) + My (2 61'g — SW"o ) + M3 060" + My (850 + 156")
L ~
Iy + M, Bv§ dc (1)

+Qx,0Y0 + 03,(056" + 0'80) + Q,,(uy 50 + O5up)

Following the same approach for the variation of the kinetic energy, we obtain as

0K = fOL ((—111‘10 — Ly —136)6ug + (I + Lwg + Is6'—IgWo)Swo + (—Izilg—Iswy —166')')69) dx  (8a)

h
where, [Io, I, I, Is] = p f_,{;z[LAZ,A (f —2),Afldz; A= (1 +2- g)

Iy Is,Ig] = pf_h,/liz[(f - 2)%,(f —2)f.f%] dz (8b)



Here, the curved beam is subjected to externally applied distributed force p(x, t) acting on the upper surface (z =

h/2). The variation of work done by the applied force, as part of the potential energy contribution, can be written as
8V =~ [ p w, dx 9)

2.6 Equations of motion

The governing equations are derived from the variational principle Eq. (6), introducing Egs. (7)-(9),

proceeding some integrations by parts and they are presented here as

Sug: —Nyx — %(Malcx - M;cx) - %Oxz - (Mﬁlcxel + Mxxeu) — (Qxz0 + Qxs0) = (_11110 — L _I3é)

SWoiz Nex — (Mt = M) = Qi — Nuxwy' — Noewy — q = (I +14300"" + 156" o)
60: _Malcx + sz - (M;x’9’ + M;x9”> - Q;zle - (lecxuz) + Mxxué)’) + szu(’) = (—I3ﬁ0—15W(’) —169) (10)

Eqg. (10), in general, can be used for solving any class of problems as it is derived in terms of stress and moment

resultants. The essential and natural boundary conditions associated with the present theory are as follows:

up or [Nxx + —(M"";M"") +M,.0" + sze]

Wo OF [Qxz + Myy — My + Nyyw) + Lyiig+ 10 + 156'] (11)
6 or [My, + M3 0" + Q5,0 + M, up]

The governing equation of motion Eq. (10) is either analytically or numerically solved.

3. Non-classical (nonlocal) formulation

The most accurate methods in modeling nanostructures are atomistic approaches such as molecular
dynamics, density functional theory etc., however they are computationally very expensive making in-depth
analysis of dynamical systems unfeasible. Continuum mechanics based approaches are simpler and make studying
the various structural behaviors of nanostructures easier. While the classical elasticity theories are size free and can
be applied to a wide range of length and time scale of structures, their accuracy in predicting behavior greatly
depends on the relation between the internal characteristic length and the external parameter. The nonlocal theories

are based on size dependent continuum mechanics that model the small scale effects in the constitutive equations.
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These theories are derived using laws such as the energy balance law being valid globally, the constitution-
dependent variables and also stress-driven formulation of nonlocal elasticity. One of the major ways the non-local
model differs from the classical approach is that stress at a point in a continuum body depends not only on the strain
at that point but also on strains at all points of the body.

3.1 Nonlocal constitutive relations

The nonlocal constitutive behaviour of a Hookean solid is represented in the differential form as proposed
by Eringen [36, 41] and extended for the beam in [37, 42] as:

(1 - 121*V®)0y; = of; (12)

Here, 0;; & aiLj are the nonlocal and local stress tensors. The local stress tensor aiLj at a point can be related to strain

tensor by the generalized Hooke’s law. 77 is equal to 11/1%; where » is defined as the nonlocal parameter and is a
dimensional quantity, (nm)? equal to (eya,)? ey is a constant appropriate to each material, a, is an internal
characteristic length (e.g. length of CC bond, lattice parameter, granular distance), | is an external characteristic
length (e.g. crack length, wavelength). The valug of e is determined from experiments or by matching dispersion
curves of plane waves with those of atomic lattice dynamics. An estimation of the value was proposed by Wang
[43] in CNT beam like wave motion studies. # is-also referred to as the scale coefficient revealing the small scale
effect on the response of structures of nano-Size. /A conservative estimate of (egay) < 2 nm is taken for SWCNT if
the measured wave propagation frequency value for SWCNT is greater than 10 THz. It is further seen from
literature that the value of « is considered in the range of 0-4(nm)? for most of the theoretical studies based on
nonlocal analysis. The Laplacian in Eq. (12) can be replaced using a double derivative in a one dimensional model

for the various stress components involved in the present curved beam theory considered here as:

no__ l
Oxx — K Oxx = Oxx

Oxz — U Oxy = aalcz (13a)
Eq. (13a) can be rewritten by expressing the local stress components aiﬁ- using the constitutive relation given in Eq.

(1) as:

"no_
Oxx — K Oxx = Cllexx
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Oxz — U Ox; = Co6Vxz (13b)

By integrating Eq. (13a) over cross-sectional area of the beam, the relations between the stress/moment resultants

involved in the present local theory and nonlocal theory are defined as:
[(Nxx — U Ny "), Moy — pt My, (Mxx —Hu Mxx” )' (Myy — 1 M;x”)] = [Naéx' Mylcx' M)lcx: M;gc ]
[(sz —H Oxz,’)' (Qxz — 1 Q%" ] = [ 09152' Q;lz] (14)

Here, the stress/moment resultants in local shear deformation theory considered here [N,ﬁx,Mfcx, M., M,’;ﬁc] can be

defined in terms of strains by introducing Eq. (4) in Eq. (5) as:

Vi * h/
[Nix, M:lcx, Malcx,ngc] = f—h?z[l'z’ f'fz] Ci1&xx dz

R h
(@ @24] = 102 [ £ 1] Cogtis 2 (15)
3.2 Nonlocal equilibrium equations

Substituting the expressions obtained for stress and moment resultants [Nxx. My, My, M;x] & [sz, Q;Z]
for nonlocal theory from Eqg. (14) into Eq. (10) and then simplifying the resulting equations, we obtain the following

governing equations in terms of local stress resultants as

1 1 o _ ~ ~
Bug: =Ny = o (M = M) = 2 Qhy = (M6 + M'1,6") = (0526 +Q',,0) =

2 .
(1= 1 25 (=hiio — Ly —1,6)

1 n vil "

1 AT 1 " 1o
SWO-ENxx_(Mxx — My )_sz = NyxWy — Nyx Wy =

2
(1125 (q + (1pith +1awg + 156" =Igvig) )

il ! A «1 a1 * " «1! il 7 A
66: _Mchx + Q;lcz = (ng( 0"+ ngce ) - Qxlz 0 - (Mﬁlcxué) + Mlxxug) + lezu(’)

2 .
(1 —u %) (=Isito—Isvg —166) (16)

11



A weak formulation can be obtained from Egs. (7)—(9) and introducing nonlocal equilibrium equation Eq. (16). One

can also apply the principle of virtual displacement to derive the variational statements as outlined in Appendix A.

4. Matrix formulation of the nonlocal variational statements

The governing equation for dynamic analysis can be obtained from the variational statements derived in
Appendix A. For a curved non-classical beam (nanobeam) subjected to transverse load p acting on the upper surface

(z = h/2), the weak form incorporating small scale effects is expressed as follows:
Iy f_ OehCrex)dzdx + f; f_ OV Coovir) dzdx = [ 8@ (1= 1) (1) + I hz s (1-

w2 oty dz] dx (17a)

where {u} is the vector containing the displacements (u, w) from Eq. (2), is rewritten as

{@} = [Fow (@){Ewn} (17b)
Here, (R (1 = 2 1 i ewnd” = [0 G2—wi) 7o wol: (37 =10 ] (170)

Following the procedure outlined by Ganapathi and Varadan [44], the variation of strain energy functional given in
LHS of Eqg. (17a) can be expressed in terms of incremental stiffness matrices that are reformulated into symmetric

forms as

ooy [[R] + () (] + (3) [Ra] + (W] (= [y Oewn)T (R)x — f; 8letin)” u(R)dx +

Jy Tewn ¥ [M] (e} dx + [ 8{etn, ¥ [M]{E00} dx (183)
where [11] = 12 [y ()17 [y (D)2 5 (R) = 12 [ (707} . (18b)

The vectors {d}7involving derivatives of fields variables with respective to the strain components &,, & y,, are

defined as

@ =[(a+2) ($-wi) (i+0-%) 0 w6 0w o

R R R

The development of various matrices [#], IKJ,[I\]I],[I\]Z] &[N,]in Eq. (18a) is given in Appendix B.
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5. Finite element approximations

5.1 Approximation for geometry

To develop the finite element model, the curved beam is first discretized into a set of elements of length [,
for a generic finite element Q.. The beam element given in Fig. 1b is defined by three nodes along the element local
x-axis. The nodal coordinates x is approximated on the reference length with respect to the reduced coordinates &
by:

x(§) =251, (21)
5.2 Approximations for displacement

The generalized displacements are given in Eq. (2) have to be approximated by FEM. Therefore, the following
functions have to be approximated:
« displacements of a mid-line point of the beam (uy, wy)

* rotation (@)

Using standard quadratic shape functions, the curvilinear axial displacement 1 (&) and the rotation 6(¢) are defined

as:
{uo} = [N, ){qu,} ; {0} = [Nul{qe} (22a)
where, [N,] = [@ @ 1-— 52] (22b)

with [N, ], the quadratic shape functions and {q,,,} and {qe}, the nodal degrees of freedom vectors on each element.

In the present work, the cubic function in the form of Hermite interpolation is employed for the transverse
displacement in order to use a conforming finite element approximation technique and to avoid membrane and shear
locking phenomena. This is ensured by recruiting {w,, wg} as the nodal degrees of freedom. The transverse

displacement w,, can be expressed in terms of nodal degrees of freedom as:

{wo} = [Ny][qw,] (23a)

13



[N, Jis the Hermite interpolation functions, {q.,,} denotes the degrees of freedom for the unknown function w,

Here:
V)= 3 =36+2) 2@ -+ ;@ +3+2) 2@ +82-¢-1) (23b)
(awe) = [ws” w? we? wi?] (23¢)

The superscripts (1) and (2) the first and the last end nodes of the element (¢ = £1), see Fig. 1b.

Let us consider the following vector {q.} of total nodal degrees of freedom for a generic elementary domain Q,:

{q.)" = [u(()l) W(gl) Wr(()l) g u‘()3) O] u(()z) Wéz) W,gz) 0(2)] (24)

From Eqg. (17c) and Eq. (19), the vectors {&,,,} and {d} are expressed in terms of the elemental degrees of freedom
vector {q.} using Egs. (22) and (23):

{euw} = [Buwliqe} {euw} = [Buwl{ge} {euw} = [Buwl{ge}
{d} = [B:l{qe}
{wo'} = [Ny {quw, } (25)

where [B,,,] and [B,] are matrices with sizes 4 x 10 and 8 x 10, respectively, collecting the shape function N,,, N,
and their derivatives terms. Substituting Eq. (25) in Eq. (18), the global equilibrium equation for the nonlinear

dynamic problem is rewritten as:

[MI{G} + [[K] + 5 [N: (@] + 5 [N2(@)] + [N3] | {q} = {F} (26)

Here, {q} is the global degrees of freedom vector of the beam. [M] is the consistent mass matrix; [K] is the linear
stiffness matrix due to membrane & bending; [N1] & [N] are the nonlinear incremental stiffness matrices dependent
linearly and quadratically on the physical field variables, respectively; [Ns] corresponds to transverse shear stiffness
matrix; {F} represents the external force vector. They are obtained by assembling the individual element

contributions, with superscript e, using the elementary matrices given as:

[Ke] = [y[BIT | K | [Bc] dx (273)

14



Ne1 = Jy1BeI" [ No| (BT dx 51 = 8" | N, | (8.1 ax: g1 = fyl8.1" [ Ns |81 ax @7
[M€] = [ By 1" [mee] [Buw] dx + o f Bl 1" [mee] (Bl ldx (27¢)

{F} = [y [Bun]" (R} dx — u [} [BL, (R}]"dx 27d)

A Gaussian numerical integration over the length and the thickness is used to evaluate the different elementary
matrices.
The element proposed here uses the field consistency principle [45, 46] to make the model free from

locking problems. By defining the shape functions of different orders of polynomials for uo, wo, & 6, the transverse
shear strain (6 +w', —%uo) for y,,, EQ. (4a) is developed in a consistent way for avoiding the spurious shear

energy issue. However, the shape functions used for vo, wo in evaluating the membrane strain (ug + %) represented
by the first two terms in the expression for ¢,,, EQ. (4a) does not satisfy the consistency principle [45, 46], leading

to locking in membrane energy for very thin beam. By finding the substitute shape function for wo to be consistent

with uo [45, 46], the membrane locking problem is resolved.

5.3 Solution methodology

For the transient response, the implicit direct time-integration method proposed in [47] is used to solve Eq. (26)
in the global sense and its details are given here. With prior knowledge of the solution at time t, this method
provides a mean to determine the displacements at time t + At by considering the equilibrium equations at time t +
At as

(M@ erae + (NN, ,, = Flesac (28)

where {G}:. 4 and {q}., 4 are the nodal acceleration and displacement vectors, respectively at time t + At.

[IN(@)1{a }]+. A is the internal force vector at time t 4+ At which can be expressed as

[IN@a}],, ,, = ([[K]+ A/2IN (@] + (/3N (] + [Ns]|{a3), , . (29)
In establishing the above equations, the tangent stiffness approach is utilized to express the internal forces

[[N(q)1{g}] at time ¢ + At as a function of the internal forces at time t as
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[[IN(@Na],,,, = [IN@Na}], + [Kr(@)].{Aq} (30)
where [K7(q)]; = [[K]+ [Ny] + [N] + [N3]] is the tangent stiffness matrix and {Aq} = {q}i1ar — {q}:.
Substituting Equation (30) into Eq. (28), the governing equation at ¢t + At is as follows

(MU G} erae + [Kr(@]efdq} = {F}eine — [N(@){q}]: (31)
Applying Newmark’s numerical integration scheme, Eq. (31) is transformed into a linear algebraic system of

equations as

[K1{Aq} = {F} (32a)

where

[K] = ao[M] + [K7 ()],

{F} = (FYesar + IMN{az2(d}e + as{d}e} — {IN(@Ha}},

ap = 1/B(At)% a; = 1/pAt; a3 = (1/28) — 1 (32b)

Here, the constants aand S are parameters that control the stability and accuracy of the numerical scheme
respectively. The displacement increment {Aq} is evaluated from above Eq. (32). Then, the displacement, velocity

and acceleration vectors at t + At can be calculated as below:

{G}esne = ao{dq} — ax{q}; — as{g}: (33)
{0} erar = a1{Aq} — as{q}; — as{G}, (34)
{@}erae = {a}: + {Aq} (35)

where a; = a/BAt; ay = (a/B) — 1; a5 = (At/2) (a/B = 1)

To improve the solution-accur and to prevent numerical instabilities, modified Newton-Raphson
iteration scheme is applied to yield equilibrium at the end of every time step until the convergence criteria suggested
in Refs. [48] are satisfied within a specified tolerance limit of less than one percent.

5.4. Buckling Criterion
The criterion to estimate the critical buckling load is generally well established for the case of static
buckling of axisymmetric shallow spherical shells. However, for predicting the dynamic buckling load, the transient

response behaviors of the shell for various load amplitudes are necessary. In general, the dynamic buckling criterion

16



proposed by Budiansky and Roth [2] is accepted. This criterion gives reasonably agreed results when employed
with different numerical techniques. By this criterion, the maximum non-dimensional average displacement and
central displacement from the transient analysis against the amplitude of pressure load are to be estimated. The
dynamic buckling or snap-through buckling load is related to the point of inflection in the load-deflection curve
wherein a sudden jump in peak average or central displacement is noticeable for a very small increment in load

magnitude [49].

6. Results and Discussions

The problem considered in this paper is that of the nonlinear dynamic buckling of curved classical and non-
classical beam, viz., macro and nanobeams, under the influence of a suddenly applied transverse step load. This
paper aims firstly in revisiting the problem done earlier and to provide rich data followed by an extensive modal
analysis of the trends in the critical buckling load of curved beams. Next, the size dependent effect of non-classical
beam through nonlocal model is focused. To ensure the efficiency of the model and exactness of the results, the
finite element formulation here is subjected to a progressive mesh refinement process against finding out the non-

R?p

dimensional critical buckling load Pc =12

for various configurations of the curved beam, toggled by the

RO

geometric parameter A defined as equal to . The geometric parameter A variation allows one to understand the

behavior of curved beam which can be either thick/thin, and/or shallow/deep. Since the present work is dynamic in
nature, carrying out a posteriori modal decomposition of the registered response using the modal expansion

approach [50] sheds light on the participation of various natural modes. Therefore, the mesh based convergence of
3
the first eight dimensionless natural frequencies, w; = wiLZ\/g where m = ph &I = % is provided along with

Pcr in Table 1. To ensure the versatility of the model, beams subjected to two different boundary conditions, hinged-
hinged (HH) and clamped-clamped (CC) are considered. The results computed for different beam geometries (1 =

{5,10,20}), as seen from Table 1, show that a curved beam approximated using 32-elements idealization reports
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converged results and the same is used for all the subsequent analysis. Unless otherwise mentioned, the applied step

load is retained over the beam for infinite duration.

The identification of the critical dynamic buckling load using the criterion outlined in [2, 49] requires the
careful analysis of the nonlinear transient response for a range of loads as the minimum load corresponding to a
sudden spike in the deflection is treated as the critical buckling load. To ensure the accuracy of the time response,
the parameters o and B in the Newmark’s integration scheme are taken as 0.5 and 0.25, which correspond to an
unconditionally stable scheme. The critical time step of a conditionally stable finite difference scheme, proposed by
Leech [51], and Tsui and Tong [52], was computed. Furthermore to ehoose a time increment that guarantees a

stable result, a convergence study was carried. The initial displacement and velocity-vectors are assumed to be zero.
The non-dimensional time 7 = LI—: (where ¢ = \/% is the speed of sound in material) runs till 120, which is large

enough to allow deflection-time curve to develop fully and small enough in real time (=~ 107°s ) to ensure the
structural resilience. The At chosen adopting the conv nce study is the order of 0.005 which is comparable with

the critical time step computed for a conditionally's finite difference scheme [51, 52].

6.1 Classical curved beam (p= 0)

The validation of the nonlinear formulation is established against the work done by Humphreys [7] for a
classical hinged-hinged curved beam. The critical load, for instance, A = 15 is traced from the response of the
structure under three different loadings as highlighted in Fig. 3a, where at P, = 0.126 the beam undergoes a
sudden large displacement, which is evident in the max-displacement versus the load plot, see the inset picture.
Following such studies in time domain, the dynamic snap-through loads evolved with respect to the geometric
parameter are displayed in Fig. 3b including the analytical results of Humphreys [7]. The numerical data pertaining
to Fig. 3(b) is also tabulated in Table 2 to benchmark for assessing other theories and solution methodology. It can
be seen in this Figure and Table that the decreasing trend in dynamic buckling loads is observed against a wide
range of the beam geometry. The finite element solutions presented here agree fairly well for geometric parameter A
up to certain value, beyond which higher critical values are predicted. The small discrepancy in results for lower
beam geometry parameter and large disparity for higher A are possibly attributed to the different beam theories and
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solution procedures employed in Ref. [7] and in the present approach as well. The analysis in Ref. [7] was based on
the beam shallowness assumption leading to constant resultant membrane force and neglecting both in-plane inertia
and transverse shear deformation effects. Furthermore, the governing equations were solved assuming a priori few
linear natural modes of the flat beam which are quite different from the free vibration mede shapes of curved beam.
The present model accounts for all the inertia terms and higher-order formulation capturing the influence of thick &
deep beams. The solutions are evaluated numerically without introducing the natural’ modes but the various
participations of natural modes are extracted from the total response. The propesed formulation is also validated
against the dynamic buckling simply supported isotropic and graphene reinforced composite arches [53,16]
subjected to centrally applied point load, P,. It is seen from Fig. [4] that the present results are in very good
agreement with the analytical solutions of Ref. [53]. The graphene reinforced composite curved beam case is tested
for a selected geometric parameter (4 = 10) by evaluating the material properties based on Ref. [54] and then the
critical dynamic buckling loads calculated by varying the weight fraction of graphe platelets content (Wgp ) are
compared against the available results in Ref. [16] in Table 3 and they are found to be in excellent agreement with

the analytical results..

To investigate the nature and degree of participation of various modes in the nonlinear response, knowledge
on the free vibration mode shapes of curved beam is essential; hence, for instance, the first ten normalized eigen
modes obtained from the free vibration analysis of hinged-hinged curved beam with A = {5,10} are depicted in Fig.
5. Here, each mode is identified by the harmonic waves and their nature in the sense whether they are qualitatively
symmetric (S) or sort of asymmetric (A) with respect to beam geometry, for example, 1S, 2S here stand for the first
and second symmetric modes whereas 1A & 2A refer the first and second asymmetric cases. A few special cases
however occurs, such as 2S-(a) for A =5 & 2S-(b) for A = 10, resembling sort of second symmetric mode but the
outward and inward travel of the modes are quite different; the mode 2S-(b) appears like a double frequency
breathing mode quite common in nonlinear vibration of closed ring or shell structures [50]. It is clear from this
discussion that, unlike in the case of flat beam, the eigen modes for the curved beam cases are quite different in
terms of the nature of the waves; peak deflection of the wave on either direction of motion of beam can be different,
depending beam geometry parameter. This is the reason for the under- or over-estimation of critical loads based on
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analytical approach with assumed mode solutions. It can be noted here that the identification of natural modes, viz.,
1S, 1A, 2S-(a) and-(b), etc. can also be done for clamped-clamped (CC) as that of hinged-hinged (HH) case;
however, such labeling, in a similar sense qualitatively, can be followed for clamped-hinged (CH) case as the end

conditions are different. For the sake brevity, such mode plots are not shown here.

Fig. 6 exhibits the level of participation of various natural modes such as. 1S, 1A, 2S, etc. in terms modal
participation factor A7 using the global time response of hinged-hinged curved beams with A = {5,10,20} at the
critical loads; these factors are found by applying the modal expansion approach using the normalized free vibration
modes. For the low value of 1 mainly associated with thick/shallow case, it is noticed that the first two symmetric
modes 1S & 2S-(a) get excited along with a few asymmetric modes. The total response is significantly dominated
by the participation of 1S, and less by 2S-(a) which is rather out of phase with the 1S mode. It is further viewed that,
for the moderately thin/deep beam, the active involvement of lower symmetric mode is absent, and all the higher
symmetric modes take part in the response and are in same phase; most prevalent mode is 2S-(b), followed by 2S-
(a) and then mode 3S. However, for very deep curved beam, although the higher modes dictate the response of the
beam, the action of very high modes among the participation modes can be out of phase with other modes. It can be
concluded that the lower-order symmetric modes are responsible for buckling of shallow geometry whereas the
higher symmetric eigen modes pronounce the snap-through load in deep beam. It can be further opined that more
energy imparted by the participating modes initiates dynamic instability early at low load. However, the way these

modes take part in the response can affect the magnitude of the critical loads.

Next, the influence of other boundary conditions on the dynamic buckling of beams and the contributing
natural modes for the response of the structures is thoroughly investigated. Fig. 7b shows the variation of the
critical loads with the geometric parameter A for the clamped-clamped beam assessed from the global time response
viz., following a typical time response & the related load-deflection plot, see Fig. 7a for A = 19. The trend in the
snap-through with respect to geometry parameter is qualitatively similar to that of hinged-hinged case. The modal
participation factors connected with various natural modes can be noticed in Fig. 8 for the selected geometric
parameter. It reveals that, for the geometry up to moderately deep case A < 10, P, is lower for clamped beam than

that of the hinged-hinged beam. This is due to the overall energy imparted by the modes participation during the
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response time on the structure is high for CC case compared with those of HH case (Fig 6). Also, it appears there is
no active participation of asymmetric modes for shallow clamped beam as opposed to the case of HH beam. For
very deep case, unlike in HH case, all higher symmetric modes are in same phase while contributing to the
response, and the model participation factor of the most prevalent mode 2S-(b) is more than that of the HH case.
The nonlinear dynamic study carried out for clamped-hinged curved beam is presented in terms of P.,. versus A as
plotted in Fig. 9b. It is observed that P.,. for the CH beam is in general lower than those of both the CC and HH
cases and this is mainly due to significant participation of all the modes (as per classification by qualitatively near to
symmetric, S and asymmetric, A modes) as exhibited in Fig. 10. The occurrence of asymmetric modes in the global
response is quite obvious as the beam end supports are not symmetric. it can also be seen that the higher energy is
imparted to beam through the nearly symmetric, and asymmetric modes at any instant of response time compared to
those of other boundary conditions, thus effectively reducing the buckling load. The mode like 2S- (a) & (b) usually

do not appear in flat beam case.

In practice, the geometry imperfection due to manufacturing process and initial conditions in dynamic
problem can drastically affect the load carrying capacity of the structural system. Some study considering the initial
conditions in the form of mode shapes and varying its amplitude is conducted on the dynamic snap-through of
simply supported beams A = {5,10} and the resuits are shown in Fig. 11. It is brought out that the buckling load
decreases in general with the increase in initial amplitude, as expected. It is also interpreted from Fig. 11a that, for
the geometry A = 5 while perturbing through the single mode, the asymmetric mode excitation results in lowering
the critical load in comparison with those of symmetric mode case for the initial amplitude up to a moderate level.
However, with further increase in amplitude, the difference in the calculated values by these initial disturbances is
less. The reason for such behavior is due to the change in the way of participation of both symmetric and
asymmetric natural modes in the nonlinear response as discussed in modal participation factors with reference to
Figs, 6, 8, and 10. The perturbation through the multi-modes is also examined for A = 10 and the predictions are
highlighted in Fig. 11b. It is viewed from this Figure that the critical loads are appreciably reduced compared to the
single mode cases as seen in Fig. 11a. The extracted modal participation factors are depicted in Fig. 12 for A=10 and
the active engagement of all types modes in the total response is visualized for asymmetric disturbance case
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whereas only the symmetric modes take part while considering initial condition through the symmetric multi-

modes.

7.2 Non-classical curved beam (nanobeam)

Before proceeding for the detailed nonlocal analysis, the nonlocal nonlinear model derived in Section 3 is
tested for the known solved problems available in the literature. In Table 4, the frequencies of the natural modes of
curved nanobeam computed here are compared with the analytical solutions based on Timoshenko theory by
Hosseini and Rahmani [55] for two values length-to thickness ratio. It can be noted here that they are found to be
in close agreement. The small discrepancy in the results is attributed to the difference in theories employed here.
Next, the linear transient response study considering suddenly applied sinusoidal load retained over the beam with
finite duration (Tg) available in the literature [56] for the curved nanobeam is tested against the present model and
the results are depicted in Fig. 13 along with those of the Navier approach; they show very good match. Then, the
investigation on the nonlinear transient behavior of non-classical curved beam is conducted as presented in Fig. 14.
This Figure compares the linear and nonlinear dynamic responses of a HH classical (u= 0) and non-classical (u= 4)
curved beams with geometrical parameter, A= 5. The nonlinear response registers a vibration of greater amplitude
against the linear analysis and can exhibit a kind of beat phenomenon for the higher nonlocal parameter. The
amplitude of vibration rises rapidly with increase in the applied load, which is not appreciable in the linear response
case. At critical loads, the linear formulation fails to register a sudden rise in deflection, while the nonlinear
formulation is able to update the system with the rapidly increasing membrane force at large deflections. As the

system approaches instability, it snaps to another stable configuration, about which it continues vibrating.

Having validated the formulation and studied the nonlocal parameter effect on the transient response, a
parametric investigation for dynamic buckling of curved nanobeam under a step load assuming hinged-hinged (HH)
and clamped-hinged (CH) support conditions is made for different values of the nonlocal parameter u = (eqa,)? as
{0,1,2,3,4} (mm)?2. These values are specifically taken because (eqao) is < 2nm as discussed in [43]. The results
achieved through the present nonlocal nonlinear formulation are described in Fig.15 for HH case. As inferred from

this Figure, a decrease in the P, can be seen with the increase in the nonlocal parameter due to the additional load
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and inertia contribution introduced by the way of nonlocal formulation; the critical reduces monotonically and
approaches a near constant value with respect to A. This characteristics of a curved nanobeam is somewhat different
from that of classical beam analysis (u = 0), for higher geometric parameter. A modal expansion approach
conducted subsequently for the modal response is provided in Fig. 16 with A = {5,10,20} and nonlocal parameter,
u=1&4nm2. It can be viewed from the investigation of the modal participation that only the higher symmetric
modes get excited irrespective shallow or deep beam HH case; unlike in local analysis, 1 = 0 (Fig. 6), the absence

of lowest symmetric mode and asymmetric modes in the response is observed for thick or shallow beam case (1=5).

Similar study for CH non-classical beam is made; the predicted critical values against geometry parameter
for different values of nonlocal parameter, and the modal participation factor for the selected geometry A =
{5,10, 20} are shown in Fig.17 and 18, respectively. It is observed that, for higher values of A, the behavior of CH
nanobeam case is qualitatively different, in the sense, that the stability of structure is improved compared to those of
hinged-hinged case. Furthermore, the higher modes associated with symmetric and asymmetric take part in the
global response (Fig. 18) as experienced in local analysis, u = 0 (Fig. 10). The consequence of the size-dependent
effect is to increase the participation of a greater number of natural modes resulting in lowering the dynamic

buckling load of nanobeam.

The same problem is lastly studied to bring out the influence of pulse load with finite duration, 7, in the
form of rectangular in nature by presuming HH nanobeam (4 =5). It can be noticed from Fig. 19a that the dynamic
buckling load increases rapidly with the decrease in pulse duration, irrespective of the material length parameter, .
It is further seen that, with the increase in pulse duration, the buckling load approaches asymptotically the value
corresponding to a pulse of infinite duration. The modal responses are also shown in Fig. 19b for u =0 & 1
corresponding to the load duration =2.5 to highlight the nature of different modes in contributing to the buckling

response.
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7. Conclusion

The nonlocal nonlinear finite element approach for the dynamic analysis of curved beam by integrating the
Eringen’s nonlocal differential constitutive relations, geometric nonlinearity stemming from moderately large
deflection and rotation, and shear deformation SIN model is developed for the first time in predicting the dynamic
bucking of curved macro and nanobeams under suddenly applied step loads. The performance of the numerical
model is test against the available results in the literature. The nature and the degree of modal participation of
various natural modes controlling the global response of the beam are brought out a posteriori by modal expansion
approach. A comprehensive investigation is made to highlight the influence of various design parameters pertaining
to the geometry and nonlocal parameter, initial condition, applied load duration, and boundary conditions on the

dynamic snap-through. From the present study, some of the observations made are as follows:

i) Imposing assumed mode shapes for solution based on flat beam can affect the buckling behavior of
curved arch with respect to the geometric parameter A.

i) The extracted natural modes from the global response using modal expansion approach are
qualitatively different from those of flat case.

iii) The lowest fundamental mode mainly gets activated in the transient response analysis for shallow
beam.

iv) For thin deep beam, symmetric modes with higher frequencies impart energy to the beam with
symmetric supports like HH and CC.

V) Participation of lower and higher modes, irrespective of the nature of modes, is observed for
asymmetric end supports (CH) in snap-through buckling.

vi) Unlike static case, the geometry in conjunction with the boundary conditions dictates the level of
buckling load.

vii) The symmetric modes labeled with 2S(b) and (a) , in general, dominate the buckling response.

viii) ~ As expected, the nature of initial conditions and its amplitude can predominately affect the load
carrying of the structure.

iX) The response amplitude increases with the increase in the nonlocal parameter.
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Xi)

xii)

With increase in the nonlocal parameter, critical buckling value rapidly reduces initially and then
monotonically decreases with the geometric parameter.

Unlike in the case of classical beam, more number of higher modes participation are seen in snap-
through response of curved nanobeam resulting in reduction in critical load.

With the reduction in pulse load duration results in rapidly increasing the critical load.
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Appendix A

Iy Iy [N = % (M = i) = % Qe = (Wi + M,0") = (@06 + Q) ) St + (5 N — (Mt
M3) = Qi = Nywwy' = N ) 8w + (—Mie + Oy — (M7 0" + M70") — Q7'0 — (Mt + Mixuf)) +
Qrzu$)860 — PSWo — uP'Swh + (Iytip + Lw + 138)8vy — (Lyily + I,y + Is8'—Igvirg )dwo + (Istiy + Iswg +
160)86 + p(lyily" + Lo + 1360")8vy" + u(lily" + Iy + 1568wy + u(lsily" + Isviry” + 166")86," +
ulovvg 6wy’ ]dxdt + [ [NSug + V8wy + Mwy' + Po15dt + [\ [NTSug + VT 8wy + M7 6wy’ + PT66]5dx =
0 (A1)
With the following boundary conditions at the ends of the beam:

up o7 N + [Nxx +%(Mxx — M) + M8’ + 0,y0 — u(lyily’ + Ly + 139")]

wo or V + [Qyz + Myy — My, + (Il + Lo’ + I56) + u(P' = IgWo") + Nyxwp]

wh or M+ [(Myy — Myy) — u(lpily’ + Iy + 156")]

0 or P+ My, —u(lsiiy' + Isirg” + 166") + M0 + Q°0 + My ug) (A.2)
With the following initial conditions for the beam:

uo or NT + [—(Itig + Lwg + 130) + u(lytiy” + Lwe" + Iswy'")]

wo or VT + [—Iogwo + ulgwy'']

wg or MT + [—(Ioug + I,wo' + I50) + u(lou” + Lawy"" +150")]

6 or PT + [ —(Izug + Iswy' + 160) + I3ty + Iswy" + 146")] (A.3)

Appendix B
The vectors {d}Tin terms of derivatives of displacement variables in defining the strain components &, &

¥xz Eq. (16) defined in Eq. (31) is given here as,

@ =[(up+2) (L-wg) (wo+6 =) yo wy 0 6w (B.1)
Element formulation is derived in general form considering strain-displacement relationship given in Eq. (16) can
be written as:

exx = (A} (L1} + 5 LAY TH, 1A} s v = ()T (L} + 5 (A} [H,){d) (82)
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where {L;} is the linear strain vector, [H;] is a symmetric matrix based on linear and nonlinear strain components.

These vectors and matrices are defined as

[L,7=[1 z f 0 0 0 0 0];[L]"=[0 0 0 f, 0 0 0 0]

000000 0 O 00000 0O 0 0
000000 0 0 00000 0O 0 O
000000 0 0 00000 0O 0 0
00000 0 0 0
[”1]=3888(1)888?[H21=00000 0 0 0
000000 0 0 00000 0 ff f,
000000 f2 f 00000 ff, 0 0

0 00000 f o 00000 £, 0 o0

The Matrices, [K], [N;], [N,] & [N3] defining the strain energy functional Eq. (18) are expressed as [63]

[R] = [L4][L,]7 (B.53)
[W,] = S24 (LY [H;] + (YT [LA[H] + [H{d) (LT (B.5b)
[N2] = 2. [H{dHdY [Hi] + 5 {d) [H;]{d} [H,] (B.5¢)
[Ns] = [L2][L1"; (B.5d)

These matrices thus derived here are given as

1z f 00 0 0 0

z z2 zf 00 0 0 O

1221;8 Fozf 2000 0 0

7l = (/2 z z¥ z - IR = (M2 0 0 0 00 0 OO
M| = dz; |K| = C dz
] f‘/zpfszzo K] 2o 0 0 0 0 0 0 0
0 0 0 1 00 0 0O0O0O0 O

00 0 00000

o 0 0 00 0 0 o

(B.6a)
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Legends Tables

Table 1: Convergence study for non-dimensional natural frequency (@) and non-dimensional dynamic critical load
(P,.) for different geometric parameters (1) of classical curved beam. (@; = wl? \/g)

Table 2: Comparison of dynamic buckling loads against geometric parameter (4) for HH classical for the present study

with analytical solutions [7].

Table 3: Comparison of critical dynamic buckling load P.,. of HH classical graphene platelets reinforced composite

J

) . . . . ] (1.4303m)%Ebh3® L
curved beam under centrally applied point load P,with Ref [16] (P = e ilNgp = . = 50,4 =
EO ok

10, Wy, = 0.1%).

Table 4: Comparison of non-dimensional natural frequencies of HH non-classical curved beam (¢ = 60°) for

different nonlocal parameter (u ) against analytical solutions [55].( &w; = wl? \/g )

Legends Figures

Fig.1: a) Geometrical parameters of curved beam b) Beam element with the degrees of freedom.

Fig.2. Un-deformed and deformed geometry of a beam section: (a) un-deformed; (b) Euler-Bernoulli; (c)

Timoshenko; (d) higher order theories
Fig. 3a: The load versus time response of classical HH curved Beam for 4 = 15.

Fig. 3b: Variation of dynamic critical load against geometric parameter (4) for HH classical curved beam along

with Ref. [7].

Fig. 4: Variation of dynamic critical load P, with geometric parameter A for HH classical isotropic curved beam

- 2
under centrally applied point load B, along with Ref. [53] ( P, = };”/[, ).
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Fig.5: Representation of different types of natural free vibration mode shapes of HH classical curved beam with

geometric parameter, A = 5 &10

Fig.6: Modal participation factors for HH classical curved beam with A4 =5, 10 & 20, and at certain loads, P.

Fig.7a: The load versus time response of CC classical curved Beam for 1 = 19.

Fig. 7b: Variation of dynamic critical load against geometric parameter (4) for CC classical curved beams.

Fig.8: Modal participation factors for CC classical curved beam with 4 =5, 10 & 20, and at certain loads, P.

Fig.9a: The load versus time response of CH classical curved Beam for 1 = 4.6.

Fig.9b: Variation of dynamic critical load against geometric parameter (4) for CH classical curved beams.

Fig.10: Modal participation factors for CH classical curved beam with 42 =5, 10 & 20, and at certain loads, P.

Fig. 11: Variation of dynamic critical load against initial amplitude, (w,) for HH classical curved beam with 4 =5 &

10 (a) single mode perturbation; (b) multi-modes perturbation

Fig. 12: Modal participation factors for HH classical curved beam with 2 =10, and initial amplitude (w, = 0.1) at

certain loads, P: (a) symmetric multi-modes perturbation; (b) asymmetric multi-modes perturbation.

Fig. 13: Comparison of linear transient response of HH non-classical thick curved beam (L/h=5) with analytical

solutions [56]: shallow nanobeam, (a) ¢ = 15°; (b) deep nanobeam, ¢ = 120°.

Fig. 14: Linear and nonlinear transient behavior HH non-classical curved beam (A4 =5) with different nonlocal

parameter: (Y u =0; () u =4

Fig.15: Variation of dynamic critical load against geometric parameter (4) for HH non-classical curved beams with

different nonlocal parameter (u)

Fig. 16: Modal participation factors for HH non-classical curved beam with 4 =5, 10 & 20, and at certain load, P:

(i) u=1; (ii) u=4
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Fig. 17: Variation of dynamic critical load against geometric parameter (1) for CH non-classical curved beams with

different nonlocal parameter (1)

Fig. 18: Modal participation factors for CH non-classical curved beam with 4 =5, 10 & 20, and at certain load, P:
() p=1; (i) p = 4.

Fig. 19: Variation of dynamic critical load and modal responses for HH non-classical curved beams A =5 with finite

pulse load duration (z,,): (a) P versus t,; (b) Modal response for pulse load duration 7,=2.5 (u = 0&1).
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Table 1: Convergence study for non-dimensional natural frequency (@) and non-dimensional dynamic critical load (P.,.) for

different geometric parameters (1) of classical curved beam. (&; = w;L? \/g)

B.C| 2 | Elements Non-Dimensional Natural Frequencies N P,
[ w, w3 @, @s [ W, g

5 4 39.6755 | go.4109 | 945984 | 1755863 | 276.1307 | 430.9504 | 627.1311 | 637.2797 | 0.213

39.1351 | 60.0812 | 927761 | 157.0395 | 246.1253 | 354.9847 | 486.1899 | 626.3690 | 0.213

16 39.0969 | 60.0579 | 92.6291 | 156.3681 | 243.9216 | 349.0311 | 472.8827 | 612.0253 | 0.214

32 39.0944 | 60.0564 | 92,6193 | 156.3232 | 243.7703 | 348.6068 | 471.8619 | 610.0842 | 0.213

64 39.0042 | 60.0563 | 92.6187 | 156.3204 | 243.7606 | 348.5794 | 471.7953 | 609.9545 | 0.213

HH | 10 4 40.9667 | 85.1644 | 1359531 | 1834635 | 285.2159 = 4432563 | 658.4954 | 797.2291 | 0.184

8 39.2878 | 81.4309 | 135.6008 | 158.3340 | 250.3289 | 360.5595 | 496.3910 | 696.3930 | 0.198

16 39.1638 | 81.1392 | 135.4962 | 157.3557 | 247.6979 | 353.8754 | 481.9316 | 628.7332 | 0.194

32 39.1557 | 81.1198 | 135.4889 | 157.2887 | 247.5128 | 353.3915 | 480.8059 | 626.3504 | 0.194

64 39.1552 | 81.1186 | 135.4884 | 157.2844 | 247.5008 | 353.3601 | 480.7322 | 626.1926 | 0.193

20 4 453384 | 952442 | 208.2030 | 249.0036 | 319.4001 | 462.2149 | 677.8777 | 814.7213 | 0.116

8 39.6672 | 84.6083 | 150.8522 | 233.2874 | 283.9409 | 364.1325 | 502.6177 | 708.1401 | 0.106

16 39.2027 | 83.6075 | 157.6902 | 230.3056 | 282.3528 | 355.2060 | 485.9733 | 632.9262 | 0.099

32 39.1725 | 835403 | 157.5390 | 230.0908 @ 282.2329 | 354.6356 | 484.6245 | 630.2396 | 0.099

64 39.1706 | 83.5359 | 157.5292 | 230.0766 282.2249 | 3545917 | 4845339 | 630.0581 | 0.099

5 4 60.4554 | 62.0655 | 125537 | 231.7259 | 378.9604 | 600.1897 | 627.8086 | 1253.0700 | 0.193

8 60.0991 | 61.1552 | 123.4697 | 198.3449 | 297.4867 | 4157805 | 549.9388 | 626.5810 | 0.187

16 60.0726 | 61.0697 | 123.1223 | 197.0277 | 293.7024 | 407.1307 | 539.4764 | 6259557 | 0.187

32 60.0700 | 61.0602 | 123.0871  196.8993 | 293.3501 | 406.2818 | 537.6596 | 625.8876 | 0.187

64 60.0693 | 61.0577 | 123.0789 | 196.8714 | 293.2851 | 406.1442 | 537.3988 | 625.8759 | 0.185

cc |10 4 63.4402 | 99.3857 | 146.5892 | 239.4079 | 390.4693 | 620.8316 | 1252.9286 | 2506.1168 | 0.188

8 61.4983 | 96.7174 | 146.1027 = 200.5545 | 303.5004 | 423.9393 | 563.2567 | 793.0382 | 0.176

16 61.2972 | 96.4318 | 1457456 | 198.9650 | 299.3970 | 414.7870 | 552.7567 | 708.9513 | 0.175

32 61.2824 | 96.4087 | 1457206 | 198.8417 | 299.0730 | 413.9928 | 551.0206 | 705.4647 | 0.175

64 61.2810 | 96.4056 | 1457189 | 198.8287 | 299.0416 | 413.9194 | 550.8689 | 705.1703 | 0.173

20 4 67.4057 | 1153324 | 252.6964 | 259.9243 | 412.8944 | 637.9067 | 2505.6708 | 5012.2220 | 0.182

8 62.0714 | 109.7196 & 202.3662 | 243.4657 | 321.4697 | 427.6925 | 569.0829 | 805.5803 | 0.122

16 61.3885 | 1085137 | 199.5638 | 241.7801 | 316.8809 | 416.9706 | 558.4235 | 714.8257 | 0.119

32 61.3406 | 108.4228 = 199.3442 | 241.6479 | 3165111 | 416.0037 | 556.4846 | 711.0692 | 0.119

64 61.3374 | 108.4163 | 199.3285 | 241.6379 | 316.4855 | 4159340 | 556.3459 | 710.7998 | 0.118
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Table.2: Comparison of dynamic buckling loads against geometric parameter (4) for HH classical for the present study with analytical
solutions [7].

A Dynamic Buckling Load (P,)
Present Ref. [7]

5 0.213 0.198

7 0.199 0.203 |

9 0.195 0.194 ‘

10 0.194 0.196

13 0.170 0.155

15 0.126 0.134

17 0.112 0.115

19 0.110 0.099

20 0.099 0.093

23 0.090 0.077

25 0.086 0.070

27 0.083 0.0650

29 0.081 0.059

31 0.079 0.054

33 0.079 0.050

35 0.078 0.048

Table 3: Comparison of critical dynamic buckling load P.,. of HH classical graphene platelets reinforced composite curved beam

— 2 3
under centrally applied point load P,with Ref [16] (P = — ; Ny = SEEDEL L = 50,7 = 10, W, = 0.1%).
Eo

312 "h
Multilayer Arch - ‘ W gpi Present Ref. [16]
U-GPLRC 0.1% 0.3729 0.3812
0.3% 0.5616 0.5744
0.5% 0.7508 0.7676
Pure Epoxy 0.0% 0.2785 0.2846
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Table 4: Comparison of non-dimensional natural frequencies of HH non-classical curved beam (¢ = 60°) for

different nonlocal parameter (u ) against analytical solutions [46]. (@; = wL? g)

L/h SIN Model (Present) Sol 1 [46]
@ @; @3 @ @, @5

10 8.1837 35.5630 76.7076 8.1991 35.7451 77.3993
7.8075 30.1123 55.8222 7.8222 30.2666 56.3256
7.4788 26.5842 46.0349 7.4929 26.7204 46.4500
7.1884 24.0623 40.0695 7.2020 24.1855 40.4308
6.9294 22.1442 35.9490 6.9425 22.2576 36.2732

50 8.3171 37.7569 | 86.6665 8.3177 37.7658 86.7084
7.9347 31.9701 63.0696 7.9353 31.9776 63.1000
7.6007 28.2243 52.0116 7.6013 28.2309 52.0367
7.3055 25.5467 45.2717 7.3061 25.5527 45.2935
7.0423 | 235104 40.6162 7.0429 23.5159 40.6359
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Fig.1: a) Geometrical parameters of curved beam b) Beam element with the degrees of freedom.
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Fig. 2. Un-deformed and deformed geometry of a beam section: (a) un-deformed; (b) Euler-Bernoulli; (c) Timoshenko; (d) higher
order theories
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Highlights

Derived nonlocal nonlinear dynamic governing equations for finite element model for curved
nanobeam in terms of generalized displacements.

Formulation includes size dependent effect for non-classical curved beam by nonlocal
elasticity theory.

Finite element based on higher-order shear deformation theory and solutions by time response
analysis.

Established the dynamic critical load through load-deflection relation obtained from time
responses.

Evaluated the degree of participation of natural modes a posteriori by modal expansion
approach.

Study on highlight the limitation of assumed-modes in nonlinear analytical formulation.

Presented benchmark results for assessing other theories and solution approaches.
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